

 Copyright 2017 Alorium Technology

FPGA

APPLICATION ACCELERATOR
&

DEVELOPMENT BOARD

User’s Manual and Release Notes

February 8, 2017

Copyright 2017 Alorium Technology Page 2

XLR8 Release Notes

Version DATE AUTHOR CHANGES
1.0 April 3, 2016 mwebber Initial Version

1.1 Dec 14, 2016 jpeterson Added Best Practices section for SPI

1.2 Feb 1, 2017 hjuedes Updated 3.3 Reconfigurability Instructions
1.3 Feb 8, 2017 Hjuedes Updated Register Summary description

Copyright 2017 Alorium Technology Page 3

XLR8 Release Notes

Table of Contents

1 Overview .. 4

2 Usage ... 4

3 Differences between XLR8 and Arduino Uno/Sparkfun RedBoard .. 4
3.1 USB ... 4
3.2 Xcelerator Blocks (XBs) ... 4
3.3 Reconfigurability ... 5

3.3.1 Connecting to Ground .. 5
3.4 I/O .. 6
3.5 ADC .. 6
3.6 Bootloader and ICSP header .. 7
3.7 I2C / Two Wire Interface (TWI) .. 7
3.8 UART ... 7
3.9 SPI .. 8

3.9.1 SPI Best Practices ... 8
3.10 Analog Compare ... 8
3.11 EEPROM ... 9
3.12 Power .. 9
3.13 Pin13 LED .. 9

4 ATmega328p features not implemented ... 9
4.1 Fuses ... 9
4.2 Power Reduction ... 10

5 Xcelerator Blocks (XBs) ... 10
5.1 Floating Point ... 11
5.2 Servo Control .. 11
5.3 NeoPixel Control .. 11

6 Register Summary ... 12
6.1 XLR8 and XB Register Descriptions ... 16

6.1.1 XLR8VERL, XLR8VERH, XLR8VERT – Version Number Registers .. 16
6.1.2 FCFGCID – Chip ID Register .. 17
6.1.3 CLKSPD – Clock Speed Register .. 17
6.1.4 FCFGDAT, FCFGSTS, FCFGCTL – FPGA Reconfiguration Registers ... 18
6.1.5 SVPWH, SVPWL, SVCR – Servo XB Registers .. 18
6.1.6 NEOD2, NEOD1, NEOD0, NEOCR – NeoPixel XB Registers ... 19
6.1.7 XFCTRL, XFSTAT, XFR0, XFR1, XFR2, XFR3– Floating Point XB Registers .. 20
6.1.8 XLR8ADCR – XLR8 ADC Control Register ... 20

7 Schematics and Layout... 21

8 Credits .. 25

Copyright 2017 Alorium Technology Page 4

XLR8 Release Notes

1 Overview
XLR8 is an FPGA-based application accelerator and development board that has been specifically
designed to look, feel, and act like a standard Arduino. It is programmed with the popular and easy
to use Arduino IDE. The heart of XLR8 is an FPGA chip that is configured with an ATMega328
microcontroller clone as well as additional accelerator functions.

XLR8 provides an option for Arduino developers to achieve significantly improved performance in
the same physical footprint and using the same tool chain as standard Arduino Uno and other
similar Arduino compatible boards, even when incorporating custom hardware functions via
accelerator blocks.

2 Usage
XLR8 can be programmed with Arduino sketches from the Arduino IDE by selecting “Arduino Uno”
as the target board, in the same way as the Uno. The pin headers are compliant with the Arduino
Uno R3 layout. It has the same analog pins, the same digital pins, and the same pins with PWM
functionality as the Uno. So, using it as a clone of the Uno is a simple as using an Uno. The real fun
starts after installing our Arduino Board package as described in the instructions at
https://github.com/AloriumTechnology/Arduino_Boards, enabling advanced features such as
doubling the microcontroller’s clock speed or utilizing Xcelerator Blocks (XBs). But you don’t need
to do that until you are ready.

3 Differences between XLR8 and Arduino Uno/Sparkfun RedBoard

3.1 USB
Similar to the Sparkfun RedBoard, XLR8 uses a USB mini-B connector and an FTDI chip to do
the USB-to-Serial conversion, which is slightly different than the Uno. If you haven’t already,
you’ll likely need to install FTDI drivers. Note that this is not needed and should not be done if
you are using Mac OS El Capitan or later. The OS will have the correct drivers.

Sparkfun has a great tutorial showing just how to do that
https://learn.sparkfun.com/tutorials/how-to-install-ftdi-drivers). We have noticed for the Mac
that Sparkfun’s tutorial doesn’t mention restarting your computer after installing the driver,
but we’ve generally needed to do that and everything has worked great afterwards. We have
also noticed that the FTDI driver in older Linux kernels (specifically, version 2.6 or older) does
not appear to support the newer FTDI chips that are used on XLR8, Sparkfun’s RedBoard, and
many other products. This can be fixed by upgrading your Linux kernel to version 3.10 or
newer.

3.2 Xcelerator Blocks (XBs)
Xcelerator Blocks give XLR8 a performance advantage through a combination of custom
hardware in the FPGA fabric along with a software library that is able to communicate with
that hardware and make it easy for users to take advantage of the performance. The software
libraries are available on our github site (https://github.com/AloriumTechnology), but it is

https://github.com/AloriumTechnology/Arduino_Boards
https://learn.sparkfun.com/tutorials/how-to-install-ftdi-drivers
https://github.com/AloriumTechnology

Copyright 2017 Alorium Technology Page 5

XLR8 Release Notes

easy to install them without even going to github. In the Arduino IDE, go to the menu Sketch ->
Include Library -> Manage Libraries, which will open the Library Manager in a new window.
Enter XLR8 in the search bar and you will find the entries for the various XLR8 libraries
available. Click on the desired library and an Install button will appear for it.

3.3 Reconfigurability
One of the most awesome things about XLR8 is its re-configurability. XLR8 is able to hold two
different FPGA images. Image 1 can be reconfigured from the Arduino IDE to take advantage of
increased functionality as new XBs are introduced. The reconfiguration files are obtained by
installing our Arduino Board package as described in the instructions at
https://github.com/AloriumTechnology/Arduino_Boards. Image 0 is never changed and is
typically unused unless the primary image 1 becomes corrupted. If necessary, a “factory reset”
of XLR8 can be performed by grounding the FPGA side of R51 (cfg_sel) while applying power
to the board. It only takes a momentary grounding to cause this to happen. The factory image
is then loaded. However, any attempt to run a sketch or reset after loading the factory image
will lead to the bad image being reloaded. The user will immediately want to reburn a known-
good image into image 1 before attempting anything further.

3.3.1 Connecting to Ground

https://github.com/AloriumTechnology/Arduino_Boards

Copyright 2017 Alorium Technology Page 6

XLR8 Release Notes

3.4 I/O
The FPGA at the heart of XLR8 is a 3.3v device. However, unlike other 3.3v boards, we’ve made
a concerted effort to make XLR8 as compatible as possible with the 5v Arduino Uno. We’ve
done this by adding level shifting and protection circuitry to the I/O so that existing shields can
be used without fear of damaging the board. The digital I/O’s (RX, TX, and D2-D13) can both
drive and receive 5V signals providing great compatibility with all shields. The analog I/O’s
(A0-A5) can tolerate both analog and digital inputs up to 5.0V, and as digital outputs can drive
up to 3.3V and that should work fine for the majority of shields and other circuits. XLR8
provides 5.0V on the IOREF pin for newer shields that use that feature.

While ATmega328p inputs can enable or disable the internal weak pullup resistors, in XLR8,
the pullups differ by pin as follows:

• RX, TX, D2-D13: Strong pullups on XLR8 board (1K ohms) are always enabled. The
initial value of the PINB and PIND registers is therefore 0x3F and 0xFF respectively.

• A0-A5: No pullups
• SDA, SCL: Strong pullups on XLR8 board (1K ohms) are included. When using Arduino

libraries, Wire.begin() enables the pullups for the I2C case (assuming the PUD bit of the
MCUCR (0x35) register is not set) without any additional work required from the user.
If desired, disabling the pullups in Arduino is as simple as doing both
digitalWrite(SDA, LOW); and digitalWrite(SCL, LOW);. Outside of the Arduino
environment the pullups are enabled when PUD is low, TWEN is high, and both PORTC4
and PORTC5 are high.

3.5 ADC
The ADC used in XLR8 is higher performing in both speed and resolution than the ADC found
in the ATMega328p. By default, doing an analogRead will give the same speed and 10 bit
resolution as an Arduino Uno. By using the XLR8ADC library
(https://github.com/AloriumTechnology/XLR8ADC) you can get 12 bit resolution. Further
enhancements will be available in the future.

One ADC difference between XLR8 and Arduino Uno/Sparkfun RedBoard occurs when running
from USB power. The USB may supply a voltage that is somewhat lower than 5V and because
the Uno and RedBoard use this for the default analog reference it results in higher ADC
readings compared both to what would be expected and to what is measured when powered
from the barrel connector. The XLR8 board does not suffer from this issue; it will give the same
ADC reading whether powered from the barrel or from USB. Some shields, however, can be
deceiving. If an analog voltage that the shield is creating drops along with the 5V USB power, it
will appear on the Uno/Redboard that the ADC readings stay somewhat constant while on
XLR8 the ADC readings will be reduced. If it is desired to have XLR8 vary the reference voltage
with the USB power similar to an Uno/Redboard, this can be accomplished quite easily by
wiring from the 5V header pin to the AREF header pin and using Arduino’s
analogReference(EXTERNAL);.

https://github.com/AloriumTechnology/XLR8ADC

Copyright 2017 Alorium Technology Page 7

XLR8 Release Notes

While the ATMega328p is able to switch its ADC reference voltage between internal 5V,
internal 1.1V, and external references, XLR8 uses circuitry on the board to make this selection.
From the user’s point of view, there shouldn’t be a noticeable difference.
To ensure that XLR8 can tolerate ADC inputs up to 5V, the analog inputs run through an op-
amp and voltage divider circuit before entering the FPGA. Again, from the user’s point of view,
there shouldn’t be a noticeable.

While the ADC channel selection is the same for measuring the primary six analog inputs
(ADMUX=0000 through 0101), there are differences in the other channels. Channel 6
(ADMUX=0110) reads from the voltage divider created by R30 and R59, and should be around
the max ADC value (1023 when in 10 bit mode) if the 5V supply is at or above 5.0V, but may be
slightly less if the 5V supply is lower. Channel 7, and the temperature sensor are not
implemented (ADMUX=0111 and 1000). Using the ADC to read the bandgap (ADMUX=1110)
does not actually do a measurement but returns a calculated value equivalent to 1.1/Aref.
Using the ADC to read ground (ADMUX=1111) does not actually do a measurement and instead
returns a fixed value of 0.

3.6 Bootloader and ICSP header
XLR8 uses the Optiboot bootloader that is used by the Arduino Uno, with a slight modification
that allows it to run correctly at different CPU speeds. As an extra indication of XLR8’s current
CPU speed, you may notice when running at 32MHz that the beginning of an upload sequence
blinks the pin 13 LED three times rather quickly just like an Arduino Uno, while at 16MHz you
get two slightly slower blinks. This bootloader is hardcoded into the design and cannot be
changed by the user. If you have a need for something different in the bootloader, we’d be
interested to hear about it. Consistent with using Optiboot, the BOOTRST “fuse” is hardcoded
to zero (programmed) and the IVSEL and IVCE bits of the MCUCR (0x35) register are
hardcoded to zero.
XLR8 is programmed only via the USB-UART path. While the XLR8 board includes the ICSP
header it is useful only as a convenient connector for the SPI interface; it can’t be used to load
programs/sketches into the design.

3.7 I2C / Two Wire Interface (TWI)
Although the Arduino Uno’s Rev3 layout has separate SDA and SCL pins for I2C/TWI, they are
still connected on the Uno board to the original A4/A5 pins. This means that when using the
I2C interface, two of your analog inputs are no longer available. On XLR8, I2C/TWI is by default
only available on the SDA/SCL pins and the A4/A5 pins can still be used as analog or digital
inputs (but not outputs). If you have existing projects that need to use A4/A5 as the I2C pins,
you can reconnect them to SDA/SCL by populating 0ohm resistors at R60 and R61.
Another difference between the I2C/TWI on XLR8 and Arduino that you will likely never
notice is related to the TWBR register. While Arduino allows running with non-standard SCL
clock frequencies, XLR8 is optimized for 100KHz and 400KHz operation and setting TWBR and
the prescaler bits of TWSR for other speeds will not be operational.

3.8 UART
XLR8 has a Universal Asynchronous serial Receiver and Transmitter (UART) block similar to
the ATmega328p USART. However, XLR8’s UART does not implement the Synchronous UART

Copyright 2017 Alorium Technology Page 8

XLR8 Release Notes

(USART) in SPI Modes that are available on the ATmega328p. Therefore, the UMSEL01,
UMSEL00, and UCPOL0 bits of the UCSR0C (0x) register, while implemented, have no effect
and the UART block always runs in “Asynchronous UART” mode. We have not yet seen a case
where anything else is needed in an Arduino environment; if you have one, please let us know.

3.9 SPI
The SPI interface on XLR8 should operate the same as the SPI interface on an Uno or Redboard.
The only item to note is that we’ve seen some SPI examples where the XLR8/Uno/Redboard is
the SPI slave and instead of being driven from the SPI master, the SS pin is left floating.
Although a sloppy design practice, an Uno or Redboard will often still work in this
arrangement. Our XLR8 board, due to its I/O pullups, needs to have SS driven and not floating.

3.9.1 SPI Best Practices
In rare cases, we have observed an issue with the SPI clock being properly sampled by a shield.
We suggest adding a 100-200 ohm pulldown resistor to the SPI clock pin D13 for more robust
operation.

3.10 Analog Compare
XLR8 does not have the Analog Compare function that is found in the ATmega328p. The ACME
bit and analog compare triggering (ADTS=001) of the ADCSRB (0x7B) register, the ACSR
(0x30) register, and the DIDR1 (0x7F) register are not implemented. If an analog compare
function is desired, pins 6 and 7 on the (unpopulated) JTAG connector are wired to MAX10
pins DIFFIO_TX_RX_B1P/N which is a differential I/O. Using the OpenXLR8 platform, a user
could implement an analog compare function that is very similar to the ATMega328's, although
the pin voltage would need to be limited to 3.3V.

Copyright 2017 Alorium Technology Page 9

XLR8 Release Notes

3.11 EEPROM
XLR8 does not have the EEPROM memory that is found in the ATmega328p. However, there is
an SOIC-8 location that could be populated with an EEPROM and using the OpenXLR8 platform,
a user could implement an EEPROM function that is very similar to the one found in the
ATMega328. The SOIC-8 pinout is:

FPGA pin Typical
Use

SOIC-8
pin

 SOIC-8
pin

Typical
Use

FPGA pin

C12 Addr0 1 1 +

-

8 Vcc 3.3V
B13 Addr1 2 7 WP D11
C11 Addr2 3 6 SCL D12
Gnd Vss 4 5 SDA E13

3.12 Power
The Arduino Uno and the Sparkfun RedBoard are only able to supply 50mA from the 3.3V pin
header. XLR8 has a 1.5A regulator creating its 3.3V power (an LT1963EST-3.3) and the Max10
FPGA is estimated to draw less than 100mA, leaving a significant amount of 3.3V power
available to the user for shields or other circuits. (Keep in mind that USB power is limited to
about 500mA.)

3.13 Pin13 LED
Digital pin 13 is used for both the on-board LED as well as the SPI clock, SCK. While the
Arduino Uno R3 adds circuitry to prevent the LED and its pulldown resistor from affecting SCK,
the Sparkfun Redboard does not take those precautions. On XLR8 we’ve decided to follow
Arduino’s lead and keep SCK separated from the LED.

4 ATmega328p features not implemented
The ATmega328p microcontroller includes several features that are seldom or never used in an
Arduino environment. In XLR8, these features are hard coded to match the Arduino usage.
Therefore, when comparing to the ATmega328p specification the following differences may be
noted, however they do not impact functionality in an Arduino environment. One exception is that
Arduino Uno allows programming via the SPI interface while, as mentioned in section 3.6, XLR8
has not implemented this feature (SPIEN fuse).

4.1 Fuses
The Arduino Uno runs with the following fuse settings.

• Low Fuse 0xFF (all unprogrammed)
o CKDIV8: Default to clock division factor of 1.
o CKOUT: Don’t output system clock on port B pin 0
o SUT1/0: Start up time
o CKSEL3/2/1/0

▪ Always use external clock (supplied by 16MHz) crystal.

Copyright 2017 Alorium Technology Page 10

XLR8 Release Notes

▪ XLR8 does not have the internal 128kHz RC Oscillator or the Calibrated
Internal RC Oscillator that exists in ATmega328p. The OSCCAL (0x66)
register is not implemented.

▪ Because ATmega328 shares the TOSC1/2 pins with the XTAL1/2 pins, and
XTAL1/2 are used to bring in the external 16MHz clock, the asynchronous
mode of timer/counter 2 is not available and the ASSR register (0xB6) is not
implemented.

• High Fuse 0xDE in Arduino (SPIEN and BOOTRST programmed), 0xFE in XLR8 (BOOTRST
programmed)

o RSTDISBL: External reset is always enabled. This is how the microcontroller returns
to the bootloader to upload a new sketch from the Arduino IDE to program memory

o DWEN: The debug wire feature is not enabled in Arduino and is not implemented in
XLR8.

o SPIEN: While Arduino programs this bit, XLR8 instead functions as if it were not
programmed (see section 3.6)

o WDTON: Watchdog always on not enabled
o EESAVE: EEPROM not preserved through chip erase. Not applicable on XLR8.
o BOOTSZ1/0: Bootloader is 256 words starting at 0x3F00
o BOOTRST: Reset starts at the bootloader address

• Extended Fuse 0x05 in Arduino (BODLEVEL1 programmed), 0x07 in XLR8 (all
unprogrammed)

o BODLEVEL2/1/0: In XLR8 the brown out detection circuitry is disabled and not
implemented. The BODS and BOSE bits of the MCUCR (0x35) register are not
implemented, as well as the BORF bit of the MCUSR (0x34) register.

4.2 Power Reduction
Because we don’t see it being used very often (or at all) in Arduino projects, XLR8 has not
implemented the ATmega328p’s Power Reduction Register PRR (0x64), Sleep Mode Control
Register SMCR (0x33), or Clock Prescale Register CLKPR (0x61). They could be added if customer
feedback indicates that would be a good thing to do.

5 Xcelerator Blocks (XBs)
Xcelerator Blocks are custom hardware blocks implemented within the XLR8 FPGA chip and are
tightly integrated with the ATmega328 clone that is also implemented inside the FPGA chip. These
custom hardware blocks can implement almost any functionality you can dream up, and can then
be loaded into the XLR8 as with the Arduino toolset. Since an FPGA can be reprogrammed many
times, a single XLR8 can be reconfigured to incorporate different XB depending on the project
requirements.

XLR8 ships with three sample XBs: Floating Point, NeoPixel, and Servo Control. As mentioned in
section 3.2, the software libraries are delivered as .zip files from our github site
(https://github.com/AloriumTechnology). They are installed like other Arduino .zip libraries as
described here (https://www.arduino.cc/en/Guide/Libraries - toc4).

https://github.com/AloriumTechnology
https://www.arduino.cc/en/Guide/Libraries#toc4

Copyright 2017 Alorium Technology Page 11

XLR8 Release Notes

Note: There is one thing to be aware of with all Arduino libraries. If you download an updated
version and simply rename the directory of the old version (perhaps you think you might want to
go back to it or maybe you are just feeling nostalgic), Arduino very likely will still end up using the
old version as it simply looks for the first place it can find the #include header file name,
regardless of what directory it is in. If you want to save an old version of a library, move it to
someplace outside of your Arduino/libraries folder.

5.1 Floating Point
As an 8 bit microcontroller, the ATmega328p struggles with floating point math. The Floating
Point XB provides functions that will give you floating point results in about ¼ the time that it
takes software floating point to get the same answer. Available functions include add, subtract,
multiply, and divide.

5.2 Servo Control
It is common for the standard Servo.h library to cause jitter in the servo control due to timing
uncertainties caused by interrupt processing. The Servo Control XB completely eliminates this
jitter by putting a dedicated hardware timer behind all 20 digital and analog pins. The
XLR8Servo.h library is a drop-in replacement for the standard Servo.h library, so taking
advantage of this XB is as simple as changing one line in your sketch from
#include <Servo.h>

 to
#include <XLR8Servo.h>

5.3 NeoPixel Control
The standard Arduino struggles to meet the timing requirements of NeoPixels. With the XLR8
NeoPixel hardware and library, interrupts remain enabled, data memory is saved, and pixel
color information does not need to be rewritten when brightness is lowered and then brought
back up. The XLR8NeoPixel library can be a drop-in replacement for the standard
Adafruit_NeoPixel library. It is common for other libraries, such as Adafruit_NeoMatrix, to
build on the Adafruit_NeoPixel library and with just three lines added to the top of your sketch,
it is possible to get the XLR8 advantages used by those libraries as well. For example,

// 3 new lines added

#include <XLR8NeoPixel.h>

#define Adafruit_NeoPixel XLR8NeoPixel

#define ADAFRUIT_NEOPIXEL_H

// Existing lines kept

#include <Adafruit_GFX.h>

#include <Adafruit_NeoMatrix.h>

#include <Adafruit_NeoPixel.h>

As explanation, working from the bottom up:
• Including Adafruit_NeoPixel.h remains because other library files that we are using but

are not modifying (Adafruit_NeoMatrix.h in this case) have #include
<Adafruit_NeoPixel.h>. The way Arduino handles compiling and linking generally
requires that lower level #includes also be included in the sketch.

• Including Adafruit_NeoMatrix remains because that is the library that this particular
sketch is using

Copyright 2017 Alorium Technology Page 12

XLR8 Release Notes

• Including Adafruit_GFX remains for the same reason that it was there initially. It is
included by Adafruit_NeoMatrix, and the way Arduino handles compiling and linking
generally requires that lower level #includes also be included in the sketch.

• Even though we are still including the Adafruit_NeoPixel.h, adding #define
ADAFRUIT_NEOPIXEL_H causes that header file to appear empty instead of having the
actual Adafruit library code.

• By adding #define Adafruit_NeoPixel XLR8NeoPixel, any place in your sketch, or
in the libraries that your sketch is using, where an Adafruit_NeoPixel string is
instantiated, it will instantiate an XLR8NeoPixel string instead.

• And of course, the XLR8NeoPixel library is included.

Easy. Powerful. Fun.
And designed to become even more powerful in the future. Watch for updates.

6 Register Summary
The registers used in XLR8 are listed below. Those with a grey background have identical function
to the equivalent ATmega328p register. Those with just a touch of grey are reserved in both XLR8
and ATmega328p but are noted because they are used in the ATmega328pb. Those with green
background function like the equivalent ATmega328p register, but with some differences as
noted. Those with blue background are new registers added for XLR8 functions. Those with white
background are ATmega328p registers that do not exist in XLR8.

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xFF) Reserved – – – – – – – –
(0xFE) Reserved – – – – – – – –

(0xFD) SVPWH – – – – Servo Pulse Width High Register 6.1.5

(0xFC) SVPWL Servo Pulse Width Low Register 6.1.5

(0xFB) Reserved – – – – – – – –

(0xFA) SVCR SVEN SVDIS SVUP SVCHAN 6.1.5

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) NEOD2 NeoPixel Data 2 register, function depends on NEOCMD 6.1.6

(0xF6) NEOD1 NeoPixel Data 1 register, function depends on NEOCMD, often high half of pixel address/length 6.1.6

(0xF5) NEOD0 NeoPixel Data 0 register, function depends on NEOCMD, often low half of pixel address/length 6.1.6

(0xF4) NEOCR NEOPIN NEOCMD 6.1.6

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –
(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

Copyright 2017 Alorium Technology Page 13

XLR8 Release Notes

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –
(0xDD) Reserved – – – – – – – – TWAMR1

(0xDC) Reserved – – – – – – – – TWCR1

(0xDB) Reserved – – – – – – – – TWDR1

(0xDA) Reserved – – – – – – – – TWAR1

(0xD9) Reserved – – – – – – – – TWSR!

(0xD8) Reserved – – – – – – – – TWBR1

(0xD7) Reserved – – – – – – – –

(0xD6) XLR8VERT XLR8 Version Number Flags 6.1.1

(0xD5) XLR8VERH XLR8 Version Number Register High Byte 6.1.1

(0xD4) XLR8VERL XLR8 Version Number Register Low Byte 6.1.1

(0xD3) Reserved – – – – – – – –

(0xD2) FCFGDAT FPGA Reconfiguration Data Register 6.1.4

(0xD1) FCFGSTS FCFGDN 0 FCFGFM FCFGRDY – – – – 6.1.4

(0xD0) FCFGCTL – FCFGSEC – FCFGCMD FCFGEN 6.1.4

(0xCF) FCFGCID Chip ID register 6.1.2

(0xCE) Reserved – – – – – – – – UDR1

(0xCD) Reserved – – – – – – – – UBBR1H

(0xCC) Reserved – – – – – – – – UBBR1L
(0xCB) Reserved – – – – – – – – UCSR1D

(0xCA) Reserved – – – – – – – – UCSR1C

(0xC9) Reserved – – – – – – – – UCSR1B

(0xC8) Reserved – – – – – – – – UCSR1A

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O Data Register

(0xC5) UBRR0H – – – – USART Baud Rate Register High

(0xC4) UBRR0L USART Baud Rate Register Low

(0xC3) Reserved – – – – – – – – UCSR0D

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0
UCSZ01/
UDORD0

UCSZ00/
UCPHA0 UCPOL0 3.8

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 –

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

(0xBB) TWDR 2-wire Serial Interface Data Register

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register

(0xB7) Reserved – – – – – – –

(0xB6) Reserved – – – – – – – ASSR 4.1

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 Output Compare Register B

(0xB3) OCR2A Timer/Counter2 Output Compare Register A

(0xB2) TCNT2 Timer/Counter2 (8-bit)
(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20

Copyright 2017 Alorium Technology Page 14

XLR8 Release Notes

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – – SPDR1

(0xAD) Reserved – – – – – – – – SPSR1

(0xAC) Reserved – – – – – – – – SPCR1

(0xAB) Reserved – – – – – – – – OCR4BH

(0xAA) Reserved – – – – – – – – OCR4BL

(0xA9) Reserved – – – – – – – – OCR4AH

(0xA8) Reserved – – – – – – – – OCR4AL
(0xA7) Reserved – – – – – – – – ICR4H

(0xA6) Reserved – – – – – – – – ICR4L

(0xA5) Reserved – – – – – – – – TCNT4H

(0xA4) Reserved – – – – – – – – TCNT4L

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – – TCCR4C

(0xA1) Reserved – – – – – – – – TCCR4B

(0xA0) Reserved – – – – – – – – TCCR4A

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – – OCR3BH

(0x9A) Reserved – – – – – – – – OCR3BL

(0x99) Reserved – – – – – – – – OCR3AH

(0x98) Reserved – – – – – – – – OCR3AL

(0x97) Reserved – – – – – – – – ICR3H

(0x96) Reserved – – – – – – – – ICR3L
(0x95) Reserved – – – – – – – – TCNT3H

(0x94) Reserved – – – – – – – – TCNT3L

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – – TCCR3C

(0x91) Reserved – – – – – – – – TCCR3B

(0x90) Reserved – – – – – – – – TCCR3A

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 – Output Compare Register B High Byte

(0x8A) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte

(0x89) OCR1AH Timer/Counter1 – Output Compare Register A High Byte

(0x88) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte

(0x87) ICR1H Timer/Counter1 – Input Capture Register High Byte

(0x86) ICR1L Timer/Counter1 – Input Capture Register Low Byte

(0x85) TCNT1H Timer/Counter1 – Counter Register High Byte

(0x84) TCNT1L Timer/Counter1 – Counter Register Low Byte
(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – –

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10

(0x7F) Reserved – – – – – – – – DIDR1 3.9

(0x7E) DIDR0 – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D

(0x7D) XLR8ADCR AD12EN – – – – – – – 6.1.8

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 3.5

(0x7B) ADCSRB – - – – – ADTS2 ADTS1 ADTS0 ACME 3.9

Copyright 2017 Alorium Technology Page 15

XLR8 Release Notes

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

(0x79) ADCH ADC Data Register High byte

(0x78) ADCL ADC Data Register Low byte

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – – PCMSK3

(0x72) Reserved – – – – – – – – TIMSK4
(0x71) Reserved – – – – – – – – TIMSK3

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) Reserved – – – – – – – – OSCCAL 4.1

(0x65) Reserved – – – – – – – –

(0x64) PRR – – – PRINTOSC – – – – 4.2, 6.1.3

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – – XFDCSR

(0x61) Reserved – – – – – – – – CLKPR 4.2

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0
0x3F(0x5F) SREG I T H S V N Z C

0x3E(0x5E) SPH – – – – SP11 SP10 SP9 SP8

0x3D(0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

0x3C(0x5C) Reserved – – – – – – – –

0x3B(0x5B) XFR3 XLR8 Function (floating point) 32 bit Result High Byte 6.1.7

0x3A(0x5A) XFR2 XLR8 Function (floating point) 32 bit Result Byte 6.1.7

0x39(0x59) XFR1 XLR8 Function (floating point) 32 bit Result Byte 6.1.7

0x38(0x58) XFR0 XLR8 Function (floating point) 32 bit Result Low Byte 6.1.7

0x37(0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN

0x36(0x56) Reserved – – – – – – – –

0x35(0x55) Reserved – – – – – – – –
MCUCR

4.1,3.4,3.6

0x34(0x54) MCUSR – – – – WDRF – EXTRF PORF BORF 4.1

0x33(0x53) Reserved – – – – – – – – SMCR 4.2

0x32(0x52) Reserved – – – – – – – –

0x31(0x51) Reserved – – – – – – – – DWDR

0x30(0x50) Reserved – – – – – – – – ACSR 3.9

0x2F(0x4F) Reserved – – – – – – – – ACSRB
0x2E(0x4E) SPDR SPI Data Register

0x2D(0x4D) SPSR SPIF WCOL – – – – – SPI2X

0x2C(0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

0x2B(0x4B) GPIOR2 General Purpose I/O Register 2

0x2A(0x4A) GPIOR1 General Purpose I/O Register 1

0x29(0x49) CLKSPD Clock speed programming used by XLR8 bootloader 6.1.3

0x28(0x48) OCR0B Timer/Counter0 Output Compare Register B

0x27(0x47) OCR0A Timer/Counter0 Output Compare Register A

0x26(0x46) TCNT0 Timer/Counter0 (8-bit)

Copyright 2017 Alorium Technology Page 16

XLR8 Release Notes

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
0x25(0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24(0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23(0x43) GTCCR TSM – – – – – PSRASY PSRSYNC

0x22(0x42) EEARH EEPROM Address Register High Byte EEPROM
function
could be

added - 3.11

0x21(0x41) EEARL EEPROM Address Register Low Byte

0x20(0x40) EEDR EEPROM Data Register

0x1F(0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE

0x1E(0x3E) GPIOR0 General Purpose I/O Register 0

0x1D(0x3D) EIMSK – – – – – – INT1 INT0
0x1C(0x3C) EIFR – – – – – – INTF1 INTF0

0x1B(0x3B) PCIFR – – – – – PCIF2 PCIF1 PCIF0

0x1A(0x3A) Reserved – – – – – – – –

0x19(0x39) Reserved – – – – – – – – TIFR4

0x18(0x38) Reserved – – – – – – – – TIFR3

0x17(0x37) TIFR2 – – – – – OCF2B OCF2A TOV2

0x16(0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1

0x15(0x35) TIFR0 – – – – – OCF0B OCF0A TOV0

0x14(0x34) Reserved – – – – – – – –

0x13(0x33) Reserved – – – – – – – –

0x12(0x32) Reserved – – – – – – – –

0x11(0x31) XFSTAT XFDONE XFERR – – – – – – 6.1.7

0x10(0x30) XFCTRL – XFSTART – – – XFCMD 6.1.7

0x0F(0x2F) Reserved – – – – – – – –

0x0E(0x2E) Reserved – – – – – – – – 328PB PORTE

0x0D(0x2D) Reserved – – – – – – – – 328PB DDRE

0x0C(0x2C) Reserved – – – – – – – – 328PB PINE

0x0B(0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 pullup 3.4
0x0A(0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

0x09(0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 reset 3.4

0x08(0x28) PORTC – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 pullup 3.4

0x07(0x27) DDRC – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

0x06(0x26) PINC – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

0x05(0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 pullup 3.4

0x04(0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

0x03(0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 reset 3.4

0x02(0x22) Reserved – – – – – – – –

0x01(0x21) Reserved – – – – – – – –

0x0(0x20) Reserved – – – – – – – –

 = unchanged from ATmega328p

 = ATmega328p registers not implemented in XLR8

 = Some differences in XLR8 compared to ATmega328p

 = new registers for XLR8 Blocks

 = Reserved registers that are best not used for XLR8 blocks because ATmega328PB uses them

6.1 XLR8 and XB Register Descriptions

6.1.1 XLR8VERL, XLR8VERH, XLR8VERT – Version Number Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
(0xD6) XLR8VERT XLR8 Version Number Flags

Copyright 2017 Alorium Technology Page 17

XLR8 Release Notes

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
(0xD5) XLR8VERH XLR8 Version Number Register High Byte

(0xD4) XLR8VERL XLR8 Version Number Register Low Byte

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

The version number register provides the FPGA design revision, while the version flags register
indicates if the build had a mixed or modified version. The registers have a constant value for a
particular design, but the value changes for each version. The easiest way to use these registers is
with the XLR8Info library (https://github.com/AloriumTechnology/XLR8Info).

6.1.2 FCFGCID – Chip ID Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xCF) FCFGCID Chip ID register

Read/Write R R R R R R R R write-reset

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

The chip ID register is a read-only register that provides chip ID information. Multiple bytes of
chip ID information are available and each read presents the next byte. Writing the register (with
any value) resets the read pointer back to the beginning (and does not store the write data in any
way).

6.1.3 CLKSPD – Clock Speed Register

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
0x29(0x49) CLKSPD Clock speed programming used by XLR8 bootloader

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

0x29(0x49) CLKSPD – – – – – – – OSCOUT

Read/Write W W W W W W W W

Initial Value N/A N/A N/A N/A N/A N/A N/A 0

(0x64) PRR - – – – PRINTOSC – – –

Read/Write R R R R R/W R R R

Initial Value 0 0 0 0 0 0 0 0

The clock speed register holds a constant value that represents the value to be programmed into
the UBRR0L register to run the UART at a baud rate of 115200. It is used by the modified
bootloader mentioned in section 3.6 to allow it to run correctly regardless of whether XLR8 is
running 16MHZ, 32MHz, or some other speed.
XLR8 includes in on-chip oscillator that currently isn’t being used, but a divide-by-1024 version of
it can be output to digital pin 8 by writing bit 0 of the CLKSPD register high. This is a write-only
operation, it does not change the value that is read from the CLKSPD register. The internal
oscillator can be turned off entirely by setting the PRINTOSC bit of the PRR register. As described
in section 3.12, the other bits of this register are currently unused.

https://github.com/AloriumTechnology/XLR8Info

Copyright 2017 Alorium Technology Page 18

XLR8 Release Notes

6.1.4 FCFGDAT, FCFGSTS, FCFGCTL – FPGA Reconfiguration Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
(0xD2) FCFGDAT FPGA Reconfiguration Data Register

Read/Write W W W W W W W W

Initial Value 0 0 0 0 0 0 0 0

(0xD1) FCFGSTS FCFGDN FCFGOK FCFGFAIL FCFGRDY – – – –

Read/Write R/W1C R/W1C R/W1C R R R R R

Initial Value 0 0 0 0 0 0 0 0

(0xD0) FCFGCTL – FCFGSEC – FCFGCMD FCFGEN

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

These registers are used during reconfiguration of the FPGA and are not intended for customer
use. FCFGEN auto-clears after a reconfiguration is complete. The Data register is a write-only
register.

6.1.5 SVPWH, SVPWL, SVCR – Servo XB Registers
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes

(0xFD) SVPWH – – – – Servo Pulse Width High Register

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

(0xFC) SVPWL Servo Pulse Width Low Register

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

(0xFA) SVCR SVEN SVDIS SVUP SVCHAN

Read/Write R/W W W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The servo data registers SVPWH and SVPWL represent the desired servo pulse width in
microseconds. The value is programmed to the channel selected by SVCHAN when the SVCR
register is written with the update (SVUP) bit set. The channel can be enabled to begin at the same
time by also setting the enable (SVEN) bit. A channel is disabled by writing SVCR with the desired
channel in the SVCHAN field, the SVEN bit clear and the SVDIS set. The pulse width of a channel
can be changed without changing its enabled/disabled status by leaving the SVEN and SVDIS bits
clear when writing the SVCR register. SVDIS and SVUP are strobes and will always read zero.
Reading SVEN will give the current enabled/disabled status of the channel read in the SVCHAN
field. The value of SVCHAN corresponds to the Arduino pin to use (i.e. 0=RX, 1=TX, 2=D2, …,
14=A0, etc.). Multiple pins can be driven simultaneously, each with a different pulse width…with a
small limitation. The 32 possible values of SVCHAN directly alias to the 16 available timers (e.g.
channels 1 and 17 could both be enabled, but they would always have the same pulse width of
whichever one was programmed most recently). The easiest way to use these registers is with the
XLR8Servo library (https://github.com/AloriumTechnology/XLR8Servo).

https://github.com/AloriumTechnology/XLR8Servo)

Copyright 2017 Alorium Technology Page 19

XLR8 Release Notes

6.1.6 NEOD2, NEOD1, NEOD0, NEOCR – NeoPixel XB Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
(0xF7) NEOD2 NeoPixel Data 2 register, function depends on NEOCMD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

(0xF6) NEOD1 NeoPixel Data 1 register, function depends on NEOCMD, often high half of pixel address/length

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

(0xF5) NEOD0 NeoPixel Data 0 register, function depends on NEOCMD, often low half of pixel address/length
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

(0xF4) NEOCR NEOPIN NEOCMD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The NeoPixel register usage varies depending on the value of the NEOCMD field in the NeoPixel
control register (NEOCR).
NEOPIN : For the show command, this specifies which pin to send the data to. For no-op a pin
number or other ID can be used. For other commands this field is ignored and not stored. For
show the value clears to zero when the command completes and thereby can be used as a busy
indication. While the hardware doesn't provide any locks, this may help software manage having
multiple objects share this hardware nicely. The outputs are indexed starting at 1 because using
the clear to zero to indicate busy/notbusy wouldn't work with pin 0.
NEOCMD : 0000 = no-op, but set PinNum/BusyID (won't autoclear until after show)

0001 = get memsize. D2=cmd buf size (entries), D1/D0= pixel mem size (bytes)
0010 = show WS2812. D2=starting cmd buffer D1/D0=length (bytes)
0011 = show WS2811. D2=starting cmd buffer D1/D0=length (bytes)
0100-0111 = Reserved.
1000 = set color. D2=color value, D1/D0=memory address (autoincrement)
1001 = set cmd buf entry-addr. D2=cmd buf addr, D1/D0=section start addr
1010 = set cmd buf entry-length. D2=cmd buf addr, D1/D0=section length
1011 = set cmd buf entry-bright. D2=cmd buf addr, D1=reserved, D0=brightness
1100 = get color. D2=color value, D1/D0=memory address (autoincrement)
1101 = get cmd buf entry-addr. D2=cmd buf addr, D1/D0=section start addr
1110 = get cmd buf entry-length. D2=cmd buf addr, D1/D0=section length
1111 = get cmd buf entry-bright. D2=cmd buf addr, D1=reserved, D0=brightness

NEOD2/D1/D0 : 8b data registers used as described above
For set, and show operations, D2/D1/D0 are loaded before doing the set/show cmd in the
CNTL register (except possibly doing a no-op to set the busy ID).
For get color, D1/D0 are set first, then CNTL, then the color value can be read from D2.
For get cmd buf, D2 is set first, then CNTL, then the cmd buf info can be read from D1/D0.
For get memsize, CNTL is written, and then the memsize can be read from D2/D1/D0.

The easiest way to use these registers is with the XLR8NeoPixel library
(https://github.com/AloriumTechnology/XLR8NeoPixel).

https://github.com/AloriumTechnology/XLR8NeoPixel)

Copyright 2017 Alorium Technology Page 20

XLR8 Release Notes

6.1.7 XFCTRL, XFSTAT, XFR0, XFR1, XFR2, XFR3– Floating Point XB Registers

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
0x3B(0x5B) XFR3 XLR8 Function (floating point) 32 bit Result High Byte

0x3A(0x5A) XFR2 XLR8 Function (floating point) 32 bit Result Byte

0x39(0x59) XFR1 XLR8 Function (floating point) 32 bit Result Byte

0x38(0x58) XFR0 XLR8 Function (floating point) 32 bit Result Low Byte

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0x11(0x31) XFSTAT XFDONE XFERR – – – – – –
Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0x10(0x30) XFCTRL – XFSTART – – – XFCMD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

A floating-point calculation is started by writing the XFSTART bit in the XFCTRL register, along
with the desired operation in the XFCMD field (1=add, 2=multiply, 3=divide). Operands come
directly from the AVR’s general-purpose register file (using our library ensures they will be in the
right place). When the operation is done, the result appears in the XFR0/1/2/3 registers and the
XFDONE status bit is set. If an unsupported XFCMD is used, the XFERR bit is also sets, allowing
software to revert to using a software-based calculation. The XFSTAT register auto-clears when it
is read, or when the next operation is started via writing the XFSTART bit.
The easiest way to use these registers is with the XLR8Float library
(https://github.com/AloriumTechnology/XLR8Float).

6.1.8 XLR8ADCR – XLR8 ADC Control Register

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Notes
(0x7D) XLR8ADCR AD12EN – – – – – – –

Read/Write R/W R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The AD12EN bit enables the ADC to run in 12 bit mode. The results reported in the ADCL and
ADCH registers when running with ADLAR=0 can range from 0-4095, and when running with
ADLAR=1, bits 5:4 of ADCL will include the least significant bits of the 12 bit ADC result. When
running in 10 bit mode (the default to match Arduino), the result is truncated (not rounded) from
the 12 bit result.

https://github.com/AloriumTechnology/XLR8Float

Copyright 2017 Alorium Technology Page 21

XLR8 Release Notes

7 Schematics and Layout

Schematics are released under the
Creative Commons Attribution

Share-Alike 3.0 License
https://creativecommons.org/licenses/by-sa/3.0

Copyright 2017 Alorium Technology Page 22

XLR8 Release Notes

Schematics are released under the
Creative Commons Attribution

Share-Alike 3.0 License
https://creativecommons.org/licenses/by-sa/3.0

Copyright 2017 Alorium Technology Page 23

XLR8 Release Notes

Schematics are released under the
Creative Commons Attribution

Share-Alike 3.0 License
https://creativecommons.org/licenses/by-sa/3.0

Copyright 2017 Alorium Technology Page 24

XLR8 Release Notes

Layout released under the
Creative Commons Attribution

Share-Alike 3.0 License
https://creativecommons.org/licenses/by-sa/3.0

Copyright 2017 Alorium Technology Page 25

XLR8 Release Notes

8 Credits
Some code is used and modified from the AVR core written by Ruslan Lepetenok
(lepetenokr@yahoo.com) that is available at http://opencores.com/project,avr_core. Ruslan’s
AVR core does not contain copyright or license notices, but we certainly wish to recognize its
contribution to this project.
The I2C module builds upon the I2C core written by Richard Herveille (richard@asics.ws) that is
available at http://opencores.org/project,i2c. The I2C core was released under BSD license with
the following copyright statement:

Copyright (C) 2001 Richard Herveille
 richard@asics.ws

This source file may be used and distributed without
restriction provided that this copyright statement is not
removed from the file and that any derivative work contains
the original copyright notice and the associated disclaimer

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

All other portions of XLR8 were designed and verified for Alorium Technology by the excellent
team at Superion Technology.

mailto:lepetenokr@yahoo.com
http://opencores.com/project,avr_core
mailto:richard@asics.ws
http://opencores.org/project,i2c

	1 Overview
	2 Usage
	3 Differences between XLR8 and Arduino Uno/Sparkfun RedBoard
	3.1 USB
	3.2 Xcelerator Blocks (XBs)
	3.3 Reconfigurability
	3.3.1 Connecting to Ground

	3.4 I/O
	3.5 ADC
	3.6 Bootloader and ICSP header
	3.7 I2C / Two Wire Interface (TWI)
	3.8 UART
	3.9 SPI
	3.9.1 SPI Best Practices

	3.10 Analog Compare
	3.11 EEPROM
	3.12 Power
	3.13 Pin13 LED

	4 ATmega328p features not implemented
	4.1 Fuses
	4.2 Power Reduction

	5 Xcelerator Blocks (XBs)
	5.1 Floating Point
	5.2 Servo Control
	5.3 NeoPixel Control

	6 Register Summary
	6.1 XLR8 and XB Register Descriptions
	6.1.1 XLR8VERL, XLR8VERH, XLR8VERT – Version Number Registers
	6.1.2 FCFGCID – Chip ID Register
	6.1.3 CLKSPD – Clock Speed Register
	6.1.4 FCFGDAT, FCFGSTS, FCFGCTL – FPGA Reconfiguration Registers
	6.1.5 SVPWH, SVPWL, SVCR – Servo XB Registers
	6.1.6 NEOD2, NEOD1, NEOD0, NEOCR – NeoPixel XB Registers
	6.1.7 XFCTRL, XFSTAT, XFR0, XFR1, XFR2, XFR3– Floating Point XB Registers
	6.1.8 XLR8ADCR – XLR8 ADC Control Register

	7 Schematics and Layout
	1
	8 Credits

