Vol. Digital Circuits
Chapter 4 Switches

Contact “Normal” State and Make/Break Sequence

Any kind of switch contact can be designed so that the contacts “close” (establish continuity) when actuated, or “open” (interrupt continuity) when actuated.

For switches that have a spring-return mechanism in them, the direction that the spring returns it to with no applied force is called the normal position.

Therefore, contacts that are open in this position are called normally open and contacts that are closed in this position are called normally closed.

 

“Normal” Process Switch Conditions

For process switches, the normal position, or state, is that which the switch is in when there is no process influence on it.

An easy way to figure out the normal condition of a process switch is to consider the state of the switch as it sits on a storage shelf, uninstalled. Here are some examples of “normal” process switch conditions:

  • Speed switch: Shaft not turning
  • Pressure switch: Zero applied pressure
  • Temperature switch: Ambient (room) temperature
  • Level switch: Empty tank or bin
  • Flow switch: Zero liquid flow

It is important to differentiate between a switch’s “normal” condition and its “normal” use in an operating process.

Consider the example of a liquid flow switch that serves as a low-flow alarm in a cooling water system.

The normal, or properly-operating, condition of the cooling water system is to have fairly constant coolant flow going through this pipe.

If we want the flow switch’s contact to close in the event of a loss of coolant flow (to complete an electric circuit which activates an alarm siren, for example), we would want to use a flow switch with normally-closed rather than normally-open contacts.

When there’s adequate flow through the pipe, the switch’s contacts are forced open; when the flow rate drops to an abnormally low level, the contacts return to their normal (closed) state.

This is confusing if you think of “normal” as being the regular state of the process, so be sure to always think of a switch’s “normal” state as that which its in as it sits on a shelf.

 

Schematic Symbology for Switches

The schematic symbology for switches varies according to the switch’s purpose and actuation.

A normally-open switch contact is drawn in such a way as to signify an open connection, ready to close when actuated. Conversely, a normally-closed switch is drawn as a closed connection which will be opened when actuated. Note the following symbols:

 

The schematic symbology for switches varies according to the switch’s purpose and actuation.

 

There is also a generic symbology for any switch contact, using a pair of vertical lines to represent the contact points in a switch.

Normally-open contacts are designated by the lines not touching, while normally-closed contacts are designated with a diagonal line bridging between the two lines. Compare the two:

 

Generic Switch Contact Designation Normally-open and Normally-closed

 

The switch on the left will close when actuated, and will be open while in the “normal” (unactuated) position. The switch on the right will open when actuated, and is closed in the “normal” (unactuated) position.

If switches are designated with these generic symbols, the type of switch usually will be noted in text immediately beside the symbol. Please note that the symbol on the left is not to be confused with that of a capacitor. If a capacitor needs to be represented in a control logic schematic, it will be shown like this:

 

Capacitor circuit

 

In standard electronic symbology, the figure shown above is reserved for polarity-sensitive capacitors.

In control logic symbology, this capacitor symbol is used for any type of capacitor, even when the capacitor is not polarity sensitive, so as to clearly distinguish it from a normally-open switch contact.

 

Multiple Position Selector Switches

With multiple-position selector switches, another design factor must be considered: that is, the sequence of breaking old connections and making new connections as the switch is moved from position to position, the moving contact touching several stationary contacts in sequence.

 

The moving contact touching several stationary contacts in sequence.

 

The selector switch shown above switches a common contact lever to one of five different positions, to contact wires numbered 1 through 5.

The most common configuration of a multi-position switch like this is one where the contact with one position is broken before the contact with the next position is made.

This configuration is called break-before-make. To give an example, if the switch were set at position number 3 and slowly turned clockwise, the contact lever would move off of the number 3 position, opening that circuit, move to a position between number 3 and number 4 (both circuit paths open), and then touch position number 4, closing that circuit.

There are applications where it is unacceptable to completely open the circuit attached to the “common” wire at any point in time.

For such an application, a make-before-break switch design can be built, in which the movable contact lever actually bridges between two positions of contact (between number 3 and number 4, in the above scenario) as it travels between positions.

The compromise here is that the circuit must be able to tolerate switch closures between adjacent position contacts (1 and 2, 2 and 3, 3 and 4, 4 and 5) as the selector knob is turned from position to position. Such a switch is shown here:

 

The selector knob is turned from position to position.

 

When movable contact(s) can be brought into one of several positions with stationary contacts, those positions are sometimes called throws.

The number of movable contacts is sometimes called poles. Both selector switches shown above with one moving contact and five stationary contacts would be designated as “single-pole, five-throw” switches.

If two identical single-pole, five-throw switches were mechanically ganged together so that they were actuated by the same mechanism, the whole assembly would be called a “double-pole, five-throw” switch:

 

Double-pole, 5-throw switch assembly

 

Here are a few common switch configurations and their abbreviated designations:

 

Single-pole, single-throw.

Double-pole, single-throw

Single-pole, double-throw

Double-pole, double-throw

Four-pole, double-throw

REVIEW:

  • The normal state of a switch is that where it is unactuated. For process switches, this is the condition its in when sitting on a shelf, uninstalled.

  • A switch that is open when unactuated is called normally-open. A switch that is closed when unactuated is called normally-closed. Sometimes the terms “normally-open” and “normally-closed” are abbreviated N.O. and N.C., respectively.
  • The generic symbology for N.O. and N.C. switch contacts is as follows:

Generic Switch Contact Designation Normally-open and Normally-closed

  • Multiposition switches can be either break-before-make (most common) or make-before-break.
  • The “poles” of a switch refers to the number of moving contacts, while the “throws” of a switch refers to the number of stationary contacts per moving contact.

 

RELATED WORKSHEETS: